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Abstract

Measured ice stress data are needed to verify and improve thermal ice
thrust prediction models used in estimating ice forces on dams, bridge
piers, locks, and other hydraulic structures. During February and March,
1983, thermal ice pressures were measured in the ice on a2 small lake in
central New Hampshire. Even though the ice sheet was relatively warm and
only exhibited small changes in temperature, stresses up to 200 to 300 kPa
were recorded with a néwly designed biaxial ice stress sensor., Ice
stresses normal and parallel to the shore of the lake were similar.

Given the rate of change of temperature of the ice, ice pressures were
calculated for the measurement period using a uniaxial rheological model
consisting of a spring and nonlinear dashpot connected in series. Calcu-

lated and measured stresses were in good agreement,



Introduction

An understanding of thermal ice pressures in lakes, reservoirs, and
rivers is required to effectively design dams, bridge piers, and other
hydraulic structures which are subjected to ice thrust. In northern
regions thermal ice thrust may even govern the design of concrete gravity
dams (Drouin and Michel, 1971). While considerable progress and experience
has been acquired during the past fifty vears on estimating thermal ice
pressures, we still lack confidence in our estimates due to the uncertainty
in the rheological behaviour of the ice and lack of reliable field measure-
ments of thermal ice pressures. Field measurements are needed to test and
possibly improve existing thermal ice thrust prediction models (Kjeldgaard
and Carstens, 1980).

During the past several years, a biaxial ice stress sensor has been
under development at Oceanographic Services, Inc., CRREL, and IRAD Gage,
Inc. {(Johnson and Cox, 1980; Johnson and Cox, 1982; Cox and Johnson,

1983). After the biaxial sensor successfully completed rigorous laboratory
tests at CRREL, several sensors were installed in the ice in a nearby

lake, The objectives of the field program were to obtain field experience
in deploying the sensor as well as some preliminary measurements of thermal
ice pressures, This ﬁaper presents the results of the field measurement
program and calculations of thermal ice pressures, given the rate of change

of ice temperature, or ice strain-rate,

Biaxial Ice Stress Sensor
The biaxial ice stress sensor consists of a stiff cylinder made of
steel (Fig. 1). 1It is 20.3 cm long, 5.7 cm in diameter and it has a wall

thickness of 1.6 cm (Fig. 2). The ends of the sensor are threaded such



that a rounded end cap can be attached to the lower end of the sensor.
Extension rods can also be screwed to the top of the sensor to position the
sensing portion of the gauge at any desired depth in the ice sheet,
Principal ice stresses normal to the axis of the gauge are determined by
measuring the radial deformation of the cylinder wall in three directions.
This is accémplished by using vibrating wire technology advanced by IRAD
Gage (Hawkes and Bailey, 1973). Three tensioned wires are set 120° from
each other across the cylinder diameter, The diametral deformation of the
gauge in these three directions is determined by plucking each wire with a
magnet/coil assembly and measuring the resonant frequency of the vibrating
wires. A thermistor is also placed inside the cylinder to measure the
gauge or ice temperature. Both ends of the sensor are sealed to protect
the wires and electromics from moisture. The sensor and data logging
equipment are fabricated by IRAD Gage in Lebanon, NH.

The magnitude and direction of the principal stresses (p, gq, and 8;)

are calculated from the radial deformations (Vrl’ Vy, and Vr3) of the

2

sensor by solving three simultaneous equations:

L]

Ve, A(p+q) + B(p-qlcos29;

v

rp = Alp+a) + B(p-q)cos2(8,+60°)

and

It

v

rg = Alp*q) + B(p=q)cos2(8;+120°)

where A and B are constants which depend on the gauge geometry and the
mechanical properties of the ice and gauge. The sensor is designed such
-that A and B are relatively insensitive to variations in the ice modulus.

Detailed equations are given in Cox and Johnson (1983).



Controlled laboratory tests by Cox and Johnson (1983) demonstrate that
the biaxial ice stress sensor has a low temperature sensitivity (5 kPa/°C),
a resolution of 20 kPa, and an accuracy of better than 10% under a variety
of loading conditions. The sensor is calibrated in a simple hydraulic
pressure cell, not in ice.

Field Measurement Program

The field measurement program was performed on Canaan Street Lake,
Canaan, NH, during February and March, 1983. On February 14, three biaxial
ice stress sensors were installed in the ice, about 25 m from shore on the
northeast side of the lake (Fig. 3). The sensors were placed parallel to
the shoreline, about 6 m apart. A 6.4 cm diameter hole was drilled through
the ice to accommodate each sensor, and the small water annulus between the
ice and gauge was allowed to freeze back, During the freezing—~in period,
each sensor was supported by a special jig. The sensing portion of the
gauges was located 0.13 m below the ice surface. At the time of the
installation and during the entire measurement program the ice was about
0.36 m thick. After the sensors were installed in the ice, they were
covered with snow and a small insulated box.

On February 17 the gauges were connected to a data logger which was
located in a house adjacent to the lake. Ice stress and gauge temperature
readings were obtained at 30 minute intervals until March 4, when air
temperatures remained consistently above 0°C.

During installation of thelsensors{'ice rafting and_buckling.were
observed to have occurred along the shére at the study site (Fig. 7). A

profile of the beach at the site is given in Figure 3,



Field Program Results

The periods of the wires in each of the sensors and the gauge
teperatures were recorded at 30 minute intervals during the measurement
program. The data were processed using the calibration procedures and
equations given in Cox and Johnson (1983) to obtain the magnitude and
direction of the principal stresses in the ice. These data were then used
to calculate the magnitude of the stress components normal and parallel to
the shore. The results from two sensors are given in Figure 6. Figure 7
presents the ice temperature at the depth of the sensing portion of the
sensors (0.13 m). From "no~load" measurements taken before and after the
field program, the data from one sensor were rejected as the sensor
exhibited considerable drift.

Due to unseasonably warm air and ice temperatures, it took about 4
days to freeze-—in the sensors. By the end of February 18, it appeared that
the stresses assoclated with freezing—in of the sensors had relaxed to
ambient stress levels,

In general, the stress measurements from the two sensors are in close
agreement, This is particularly true for the stress components normal to
the shore, Parallel to the shore the difference between the stress
measurements is greater, Considering the proximity of the semsors to the
beach, this may be due to the variation in the shear stress along the shore
boundary. Spatial differences in stress may also be due to active cracks
in the_ice.‘ As the icg sheet was covered with snow, the crack distributiqn
pattern was not studied.

Maximum compressive stresses normal to the shoreline were about 140

kPa, while maximum tensile stresses approached 240 kPa. Parallel to the



shoreline, peak stresses were greater, about 210 kPa in compression and 310
kPa in tension.

Calculated Thermal Ice Pressures — Ice Rheology

The magnitude of thermal ice pressures in an ice cover depend on a
number of factors. These include: the rate of change of temperature in
the ice; the ice coefficient of thermal expansion; the rheology of the ice;
the size and distribution of wet and dry cracks in the ice cover; the ice
thickness; and the degree of confinement of the ice sheet (Bergdahl,

1978). The rate of change of temperature of the ice cover depends on the
wind speed, air temperature, solar radiation, and depth, density, and
albedo of the snow cover. As far as predicting thermal ice pressures is
conﬁerned, the ice rheology and the effect of cracks in the ice cover
remain the most significant uncertainties (Kjeldgaard and Carstens, 1980).

Several rheological models have been used to calculate thermal ice
pressures, given the rate of change of temperature in the ice (Lindgrén,
1970; Drouin and Michel, 1971; and Bergdahl, 1978). Lindgren utilized a
linear visco-elastic model composed of a Maxwell unit and a Kelvin-Voigt
unit connected in series, Drouin and Michel used a nonlinear model con-—
sidering the number and multiplication rate of dislocations in the ice.
Bergdahl applied an ice model consisting of a linear spring and nonlinear
dashpot conmected in series. Of the three models, Bergdahl's model appears
to best describe the behaviour of ice with the least number of unknown
parameters (Bergdahl, 1977).

Bergdahl's rheological model may be expressed as

£ = E‘ia- kD ()7 (1)



where € is the ice strain, o is the ice stress, g _is a unit stress (1 Pa),
E is the effective elastic modulus of the ice, D is a diffusion coeffi-
cient, and K and n are functions of strain-rate and temperature, The.
effective modulus, rather than Young's modulus, is used in the model, as
the effective modulus also accounts for the effects of delayed elasticity
which is not considered in the viscous part of the model. In estimating
maximum ice thermal pressures in five Swedish Lakes, Bergdahl and

Wernersson (1978) chose

E={(1-¢C0 6.1 GPa, _ (2)
where € = 0.012 °C~! and 8 is the ice temperature;
D= DO exp (-Q/RT), (3)
where
D =9.13 x 107 n¥s ,

Q = 59.8 kJ/mole (activation energy for self-diffusion),

R = 8.31 J/mole °K (gas constant),

T = absolute temperature;
and

K = 4,40 x 10-% o2

n = 3.651
Estimates of E, K, and n were based on limited test data on $1 ice (c-axis
vertical columnar ice) loaded normal to the optic axis at -10°C,

In calculating thermal pressures in an ice cover, Bergdahl and
Wernersson assumed that the ice had a low tenmsile strengﬁh. In ﬁheir
computation program the ice pressure was allowed to reach its maximum

tension value, and then the stress was set to zero as if the ice had



cracked. During subsequent warming, a conservative estimate of ice pres-
sure was therefore obtained.

Bergdahl's rheological model was used to calculate the ice stress in
Canaan Street Lake during this study. As the ice was warm and presumably
ductile, the model was modified to allow tensile stresses to accumulate in
the ice cover during cooling periods without any ice cracking. As
Bergdahl, a finite difference scheme was used to calculate the ice
pressure. However, Newton's method rather than successive substitution was

used to solve the nonlinear equation, From Bergdahl(1978) we have

gp = O + E [AE - [Dleln + DzKO'zn] -—A-Eﬁ'] (4)

20'*

and the subscripts denote the value of the parameters at times 1 and 2,
The ice thermal strain during the time step, At, is calculated from
be = gy - €7 = Ty = T)
where ¢ is the linear coefficient of thermal expansion and T is the ice
temperature. Applying Newton's method (Carnahan énd Wilkes, 1973) to solve

for o, we obtain

g1 - 0y + E[be = (DRoy" + DoRoy ) At—n]
2q,

0o(NEW) = a5 + (3)

1 +n E DzKO'zn—l -é‘-;--"-

n
20%

Initially, we set o, equal to o, and calculate o,(NEW). Next, g, is set
equal to oj (NEW) and o,(NEW) is recalculated. Several interactions are
performed until o,(NEW) is approximately found to be equal to ¢,. The
stress at the next time step is determined by setting o) to o, and repeat-

ing the above procedure.



The computed stress—-time history, using Bergdahl's model and his
recommended values for E, K, D, and n, 1s compared to the measured stresses
{Gauge 514) in Figure 8. 1In general, Bergdahl's model over-predicts
compressive and tensile stresses in the ice, While a constrained uniaxial
spring and nonlinear dashpot rheological model may not be the best model to
describe the thermal expansion of an ice sheet, the difference between the
measured and calculated stresses can be explained partially by Bergdahl's
selection of E, K, and D. Bergdahl chose an effective ice modulus of about
6 GPa to describe the elastic behaviour of the ice. For the low strain-
rates typical of thermal expansion, the effective modulus of ice is
expected to be much lower (Weeks and Mellor, 1983). Work by Traetteberg et
al, (1975) on the modulus of S2 ice suggest that a modulus of 4 GPa may be
more appropriate., Bergdahl also uses the Arrhenius equation to describe
the effect of temperature on the creep rate of ice (Eq.'3). While this
assumption appears to be justified for the creep of polycrystalline ice at
temperatures below -10°C, it does not appear to be warranted at higher
temperatures. Above -10°C, a plot of ln ¢ vs 1/T is strongly nonlinear,
indicating that the creep activation energy, Q, is not comstant but
increases with increasing temperature (Mellor, 1980). At higher tempera-
tures, deformation processes in addition to diffusion mechanisms come into
play. These include recrystallization, grain boundary melting, and grain
bouﬁdary shear. The product KD in Eq 1 needs to be re-evaluated for ice
therm;l expgnsionrproblems.

Bergdahl used data on the mechanical properties of 81 and at -10°C
given in Drouin and Michel (1971) to determine the values of K, D and n.

Drouin and Michel alsc present data on the mechanical properties of Sl ice



at -30 and 0°C. These results were used to define a new function A(T)
which describes the temperature dependence of the creep rate of Sl ice,

such that,

(6)

where

.
£

(Umax/U*Jn

A(T) =

in a constant strain-rate test, or

L)
min

(o/0,)"

A(T) =

in a constant load test, Both types of tests can be used to evaluate A{(T)
for ice, considering the correspondence between these tests described by
Mellor and Cole (1982).

From the curves presented by Drouin and Michel, values of gy,x were
obtained for a strain-rate of 2x10-% s=1. The interpolated values from
their curves are given in Table 1 and ln A(T) is plotted against ln T in
Figure 9. To provide a limear fit of the data, it was assumed that the 0°C

tests were performed at ~1°C. This may not be an unreasonable assumption

as it 1s exceedingly difficult to perform well controlled tests at 0°C. By

adjusting the data

T \m
AT) =B ()
¥*
where Tsx is a unit temperature, B = 2.46x107 22 S‘l, and m = 1.92,

After suitable values of E and A(T) were determined, Equation 6 was

then used to calculate the thermal stresses in the ice during the measure-



ment program. The results are presented in Figure 8. By using more appro-
priate values of E and A(T) better agreement is obtained between the calcu-
lated and measured results. In fact, it is surprising that the agreement
is as good as it is, considering the paucity of data on the mechanical
properties of columnar ice above -10°C.
Conclusions

While reasomable agreement was obtained between measured and calcu-
lated stresses using a modified form of Bergdahl's model, considerably more
work needs to be done before we can predict thermal ice pressures with
confidence, Additional tests on the mechanical properties of columnar ice
at high temperatures and low strain-rates need to be performed to define a
suitable rheological model for ice pressure calculations. Criteria must be
developed to predict cracking and buckling of the ice cover. The effect of
biaxial restraint needs to be further evaluated, Finally, measured stress
and strain data mist be obtained for larger variations in ice thickness and
temperature to test and verify future thermal ice pressure models.
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Table 1, Values of gy, for horizontal Sl ice specimens at different
temperatures and corresponding values of A(T) for n = 3.7.

CRREP RATE TEMPERATURE DEPENDENCE FACTOR, A(T)

g
Temperature max A(T)
¢ MPa)
0 _ 0.45 2.42x10™ 29
-10°c 1.46 3.11x10-3!

-30°C 2.65 3.42x10™ 32



Figures

Figure 1: Biaxial ice stress sensor.
Figure 2: Schematic of biaxial ice stress sensor.

Figure 3: Map of Canaan Street Lake showing location of ice stress
sensors.

Figure 4: 1Ice rafting and buckling along the shore at the measurement
site.

Figure 5: Beach profile at the study site.
Figure 6: Measured ice stresses in the ice on Canaan Street Lake, NH,

Figure 7: Ice temperature at the depth of the sensing portion of the

gauge.
Figure 8: Measured (Gauge 514) versus calculated ice stresses.
Figure 9: Creep rate temperature dependence factor, A(T), versus tempera-

ture.
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